Post Von Neumann Computing Matthias Kaiserswerth

Hasler Stiftung (formerly IBM Research)

Foundation Purpose

Support information and communication technologies (ICT) to advance Switzerland as a place to work and think.

Mechanisms

- **1. Education** Computer Science as compulsory subject in secondary schools
- **2. Research** Topical research programs (Smart World, MMI, DICS)
- **3. Innovation** Startup funding

Structure

- Foundation board (6 Persons) split into investment and scientific committees
- Offices in Berne

IBM Research

Austin

adda-shes

World's largest information technology research organization

Brazil

Almaden

Agenda

1. Von Neumann Computing

2. Big Data

3. Cognitive Computing

4. Post Von Neumann Computing

Von Neumann Computer

Input Device

Agenda

1. Von Neumann Computing

2. Big Data

3. Cognitive Computing

4. Post Von Neumann Computing

2.5 quintillion bytes of data created every day. **90% of the data** in the world today has been created in the last **two years** alone.

Wpdms

Every minute, **1.7 megabytes** of data is created for **every person** on the planet. **All 7.3 billion of us.**

robe...

Unstructured data — "dark data" — accounts for 80% of all data generated today.

This is expect to grow to 93% by 2020.

Agenda

1. Von Neumann Computing

2. Big Data

3. Cognitive Computing

4. Post Von Neumann Computing

Tabulating Systems Era 1900 - 1940s

IBM

min min

SYSTEM 880

the with

Cognitive Systems Era 2011 -

Welcome to the dawn of the Cognitive Era

The Future of Computing: Non-Von Neuman for Next Generation Cognitive Applications

Physics of Nanoscale Systems

Quantum Computing

Neuromorphic Computing

Classic vs Quantum Computer

A classical computer makes use of bits to process information, where each bit represents either a 1 or a 0.

A quantum bit (qubit) can represent a 1, a 0, or both at once, which is known as superposition.

This property along with other quantum effects enable quantum computers to perform certain calculations vastly faster than is possible with classical computers.

 $\mathbf{0}$

Classic Bit

Three Known Types of Quantum Computing

Analog

First time we will likely see a speed up over conventional computing

Annealer

Potential applications for optimization problems

YEARS

Universal

50-100 qubits: none of today's TOP500 supercomputers could successfully emulate it,

+25

Quantum Systems Era

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy." Physicist Richard Feynman, Physics of Computation Conference, co-organized by MIT and IBM, May 6-8, 1981

IBM's Quantum System Milestones: 1970s - Today

- 1970 Quantum money (security) - Wiesner/Bennett
- 1984 Quantum key distribution (BB84) -Bennett/Brassard
- 1993 Quantum teleportation Bennett et al.
- 1996 DiVincenzo Criteria for building a quantum computer
- 2001 Shor algorithm with NMR Steffen/Chuang/Vandersypen
- 2015 Error Correction
 Demonstration with superconducting qubits (shown at IBM and other groups)

2016 - IBM Quantum Experience (5 qubits in the cloud for the general public)

Try it today: http://bit.ly/5qubitcloud

Quantum Computing Platforms: Status Quo

	# of controllable qubits	main application	scalability	(2-qubit) gates per coherence	Clock speed	universal s gates
Superconducting Qubits	~ 10	computing	+: micro-/ nanofabrication -: qubit size	100-1000	100 MHz	proven
Trapped lons	~ 15	computing	surface traps	1000 - 10000	100 kHz	proven
Ultra-Cold Atoms	~ 5 / 1000	simulation	+: laser lattices -: individual control	1-10	1 MHz	controlled 2- interaction
Quantum Dots	~ 3	computing	+: nanofabrication -: long range coupling	10-100	1 GHz	scalable 2-qub ?
NV Centers	~ 2	sensing	-: 2-qubit interactions	1-10	1 kHz	2-qubit gat
Photons	~ 10	communication	-: single photon source	n.a.	1 Hz	2-qubit interaction

Superconducting Qubit Processor – A Closer Look

non-linear Josephson Junction (Inductance) anharmonic energy spectrum => qubit nearly dissipationless => T_1 , $T_2 \sim 70 \ \mu s$

read-out of qubit states multi-qubit quantum bus

IBM Quantum Computing

User Guide

Composer

My Scores

Welcome to the IBM Quantum Experience

If quantum physics sounds challenging to you, you are not alone. The intuitions we all have, based on our day-to-day experiences, are defined by classical physics -- so most of us find the concepts in quantum physics counterintuitive at first. If you try to interpret quantum mechanics with a classical physics mindset, you'll find it is not only a hindrance - it is impossible to do so. In order to comprehend the quantum world, you must let go of your beliefs about our physical world, and develop an intuition for a completely different (and often surprising) set of laws.

Our goal with the IBM Quantum Experience is to introduce this world through a set of tutorials, and by providing the hands-on opportunity to experiment with operations on a real quantum computing processor. In this way, we hope to foster a quantum intuition for the community at large, and spark interest in those who are curious. By making quantum concepts more widely understood - even on a general level - we can more deeply explore all the possibilities quantum computing offers, and more rapidly bring its exciting powers to a world that thinks it is limited to the laws of classical physics.

We have developed five short tutorials that explain how the IBM Quantum Experience and the quantum world works.

Section I

The IBM Quantum Experience

Introducing the world's first cloud-based quantum computer built for and useable by everyone!

Section II

...

and MALE and a state of MALE and ALE and ALE and

Industry Applications in Quantum Computing

- Chemistry, e.g. for catalyst design
- Material Science, e.g. for energy efficient devices
- Life Sciences, e.g. for drug development
 - Optimization, e.g. for cognitive computing and business processes
 - Cryptography, e.g. for secure communication and information processing
 - Education, e.g. to train engineers for the future quantum industry

٢

Choose a Side: Naysayers or Feynman?

First integrated circuit Size ~1cm² 2 Transistors 1971

Moore's Law is Born Intel 4004 2,300 transistors

2014

2070

IBM P8 Processor <650 mm² 22 nm feature size 16 cores > 4.2 Billion Transistors

Choose a Side: Naysayers or Feynman?

First integrated circuit Size ~1cm² 2 Transistors 1971

Moore's Law is Born Intel 4004 2,300 transistors

We are here

IBM P8 Processor <650 mm² 22 nm feature size 16 cores >4.2 Billion Transistors

2070

Neuromorphic Computing

Brain-inspired

computing

Biological neurons and synapses

Input modalities

Social computing Scientific computing Sensory data

Cognitive Systems

In-silico neural hardware

"Memelements": artificial neural components

Small-scale prototypes of neural hardware

Networks of neurons and synapses

TrueNorth Chip (SyNAPSE)

Pr Sy

Ne Co

	2011	Now
ogrammable eurons	256	1 million
ogrammable mapses	262,144	256 millior
eurosynaptic ores		4096

Saliency

Object Centers

Saliency + Classification

Output

Detecting Correlations with a Spiking Neural Network

60

20

40

80

100

Primary Neuron

nature AUGUST 2016 VOL 11 nanotech

Phase-change neurons

Brain Inspired Computing: Electronic Blood

- 98% of the energy of a computer is for cooling •
- Liquid removes heat 4000x more efficiently than air 0
- The brain is powered & cooled using liquid, can we do the same for computers? • The result: a 1 PetaFlop supercomputer in 10 liters 0

Summary

Questions?