

The Bounds of "Bounded Rationality"

Evangelos Ioannidis and Morteza Nikravan

15th Dialogue on Science: At the Limits!

13 October 2016, Engelberg

Contributors

Evangelos Ioannidis:

- ☐ PhD Candidate *Complex Networks*, Aristotle University of Thessaloniki (AUTH)
- ☐ Research Fellow at the *Complex System Analysis Laboratory* (COSAL)
- ☐ Teaching Assistant at the Inter-Disciplinary Master Program on *Complex Systems* and *Networks* (COSYNET)

Morteza Nikravan:

- □ PhD Candidate *Civil and Environmental Engineering*, Amirkabir University of Technology (Tehran Polytechnic)
- ☐ Assistant Director of the *Office of Sustainability*, Amirkabir University of Technology (Tehran Polytechnic)
- □ Lecturer at Mehr Albors University, *Sustainable Construction and Green Building Program*

Agenda

- ☐ Decision Making and Rationality
- ☐ Bounded Rationality (Herbert A. Simon)
- ☐ Heuristics approach to Decision Making
- ☐ Ecological Rationality (Gerd Gigerenzer)
- ☐ Rationality and Interconnectedness
- ☐ Internet of Things, Industry 4.0 and Semantic Web
- ☐ Concluding Remarks

"We are our choices."

CMOICES.

What is a Choice?

Passing from **several Potentialities** to the **single Actualization**

An Example of "Rational Decision"

Customer A offers you: CHF10

Customer **B** offers you: **CHF20**

In Economics, this is called as "the Rational Agent Assumption"

Decision-Making and Rationality

☐ What is **Decision-Making**?

Decision-Making is a **Cognitive Process** resulting in a **Choice**, **according to certain Criteria in the frame of a Model**.

☐ What is a **Rational Agent**?

A **Decision-Maker** who:

- is always Aware of the available Potentialities (Sample Space) and
 Probabilities (Probability Distribution over the Sample Space)
- has well-defined **Preferences** (**Utility Function** over the Sample Space)
- always selects the Optimal Decision (Maximization of the Expected Utility)

Agents of Bounded Rationality

In practice, agents make their decisions under Bounded Rationality due to limited available resources

Limitations of available:	
	Cognitive Capabilities / Computational Intelligence
	Data, Information, Knowledge
	Time/Budget
form the Bounds of:	
	Computability
	Accuracy
	Predictability

Bounds of "Decidability"

Decisions of Bounded Optimality

As agents are **not able** to implement the **Optimal Decision**, they act as **Satisficers**

(Satisficing: Satisfy and Suffice)

Epsilon-Optimization:

$$U(s) \ge \max_{\omega \in \Omega} \{U(\omega)\} - \epsilon$$

- Ω is the set of all **Possible Outcomes**
- $U(\omega)$ is the **Expected Utility** of Outcome $\omega \in \Omega$
- $\epsilon \ge 0$ is the epsilon **bound**
- $s \in S(\varepsilon)$ is an **«epsilon-optimizing» Outcome**
- $S(\varepsilon) \subset \Omega$ is the set of all «epsilon-optimizing» Outcomes

Herbert A. Simon Nobel Prize in Economics (1978)

WHAT is the Problem?

How to minimize the epsilon bound ε effectively ?

the Thinker VS the Doer

If everything seems under control, you're just not going fast enough

Mario Gabriele Andretti

Heuristics

Heuristic Technique: A **fast and «frugal»** Decision-Making method which is based on a **Simple Rule** sufficient for Fast Decision Making under Limited Resources or Uncertainty

Heuristic is a Mental Shortcut or «Bypass» using ad-hoc selected simplifying assumptions.

Examples:

- ☐ **Greedy Algorithm** (consider only immediate benefit and wait for the next step)
- ☐ Trial & Error

An Example of Heuristics: Greedy Algorithm

Goal: Reach the Largest-Sum

Starting at **A**, a Greedy Algorithm will find the **Local Maximum** at "m", oblivious of the **Global Maximum** at "M"

Who does this calculation to catch a ball?!!

Gaze Heuristic

Adjust your motion to achieve a goal, **using one variable only.**

Gaze Heuristic

Gaze Heuristic

Gaze Heuristic

Adaptive Toolbox and Ecological Rationality

☐ **Adaptive** Toolbox Heuristics are evolving. They are **continuously** shaped by **Evolution** and **Learning** (Feedback Loop), resulting into their **Adaptation** within a **specific** Context/Environment.

Gerd Gigerenzer

☐ **Ecological** Rationality A Heuristic is **Ecologically Rational** «to the degree that it is adapted to an Environment». Heuristics **co-evolve** with their Environment.

Information Diffusion in Networks and Decision Making

Higher Interconnectedness expands the bounds of rationality of the Agents

Access to Web = Better real time Decision Making

Network Effect and Metcalfe's law

The more «users» joining the Network,

the more Value they give and eventually gain from the Network

- The Value that you gain from being in the Network depends critically on the number of interconnected users: Value of the Network $\propto N^2$ (Metcalfe's law)
- Network Effect becomes significant after a certain threshold, called **«Critical Point»**

Internet of Things

Internet of Things: Living beings (People) and non-living entities (Things) interact and decide in real time, forming a Complex Adaptive System, allowing their «Harmonious Symbiosis»

Examples: SMART Ecosystem, SMART Industry/Value Chain, SMART Health System

4th Industrial Revolution

Cyber-Physical Systems: Interconnected «Mechatronics» (Mechanical and Electronic devices) augmented with communication capabilities based on computer algorithms

More Users Generate More Data

Semantic Processing and Significance

- ☐ How data can help me to take rational Decisions effectively?
- □ What is the Meaning of data (Semantic Information)
 and what is their Significance (Pragmatic Information)? ⇒ Complexity reduction

- ☐ Semantic Networks: A Network of Semantic Relations between Concepts
- ☐ Ontology: A Semantic Network together with the relevant Inference Rule (Semantic Web)
- ☐ **Linked Data: Structured** data by **interlinking** them in order to become more useful when questioning (making a Query) and take Decisions.

Concluding Remarks

- □ A higher level of **Interconnectedness** will allow better Decision-Making 4th **Industrial Revolution Internet of Things**
- ☐ Considering Software aspects, **Semantic Information processing** is needed, in order to **deal with Big Data effectively in real time**.

 Semantic Web
- ☐ When more and more people and/or devices become interconnected, the damage of a potential **Information/Knowledge Warfare** increases **Cyber-Security**

Thanks

ACADEMIA ENGELBERG for the support.

Summer school and Conference

